3.3. Enthalpy#

Overview#

Enthalpy \(H\) is a thermodynamic potential particularly convenient for processes at constant pressure, which is common in chemistry.


Defining Enthalpy#

Consider the first-law expression when \(T\) and \(P\) are the independent variables:

\[\delta q = \left[\left(\frac{\partial U}{\partial T}\right)_P + P \left(\frac{\partial V}{\partial T}\right)_P\right] dT \;+\; \left[\left(\frac{\partial U}{\partial P}\right)_T + P \left(\frac{\partial V}{\partial P}\right)_T\right] dP.\]

At constant pressure, this becomes:

(22)#\[\delta q_P = \left[\left(\frac{\partial U}{\partial T}\right)_P + P \left(\frac{\partial V}{\partial T}\right)_P\right] dT.\]

Define the heat capacity at constant pressure, \(C_P\):

\[C_P \;=\; \left(\frac{\partial U}{\partial T}\right)_P \;+\; P \left(\frac{\partial V}{\partial T}\right)_P.\]

We seek a state function \(H\) such that

(23)#\[\delta q_P = \left(\frac{\partial H}{\partial T}\right)_P \, dT.\]

This motivates the definition of enthalpy:

(24)#\[H \;=\; U + PV.\]

Measuring Enthalpy and Enthalpy Changes#

At constant pressure, the heat absorbed or released by a process is equal to the change in enthalpy of the system:

\[q_P = \Delta H = H(T_f) - H(T_i).\]

If \(C_P\) is approximately constant over the temperature range \(\Delta T = T_f - T_i\), then

\[\Delta H = \int_{T_i}^{T_f} C_P(T)\,dT \;\longrightarrow\; C_P \,\Delta T.\]

A typical way to measure \(\Delta H\) experimentally is via calorimetry. Below is a schematic of a simple calorimeter:

Hide code cell source
import numpy as np
import matplotlib.pyplot as plt
from scipy.constants import k, eV
from labellines import labelLines
from myst_nb import glue

fig = plt.figure(figsize=(4, 4))

# Container
plt.plot([0, 2], [0, 0], 'k-', lw=2, label='Container base')
plt.plot([0, 2], [2, 2], 'k-', lw=2)
plt.plot([0, 0], [0, 2], 'k-', lw=2)
plt.plot([2, 2], [0, 2], 'k-', lw=2)

# Water
plt.fill_between([0, 2], 0, 2, color='blue', alpha=0.3, label='Water')

# Thermometer
plt.plot([0.25, 0.25], [1.5, 2.5], 'r-', lw=2, label='Thermometer')

# Stirrer
plt.plot([0.5, 0.5], [0.5, 2.5], 'k-', lw=2, label='Stirrer')
plt.plot([0.25, 0.5, 0.75], [0.4, 0.5, 0.4], 'k-', lw=2)
plt.plot([0.25, 0.5, 0.75], [0.6, 0.5, 0.6], 'k-', lw=2, alpha=0.5)

# Sample container
plt.plot([1.5, 1.9], [0.1, 0.1], 'C7-', lw=2, label='Sample Container')
plt.plot([1.5, 1.9], [0.5, 0.5], 'C7-', lw=2)
plt.plot([1.5, 1.5], [0.1, 0.5], 'C7-', lw=2)
plt.plot([1.9, 1.9], [0.1, 0.5], 'C7-', lw=2)

plt.fill_between([1.5, 1.9], 0.1, 0.5, color='white')

# Sample inside container
np.random.seed(42)  # For reproducibility
x_sample = np.random.uniform(1.6, 1.8, 20)
y_sample = np.random.uniform(0.2, 0.3, 20)
plt.scatter(x_sample, y_sample, color='orange', alpha=0.5, label='Sample')

# Ignition source
plt.plot([1.7, 1.7], [0.3, 2.5], 'm-', lw=2, label='Ignition Source')

plt.legend(bbox_to_anchor=(1.05, 0.5), loc='center left', borderaxespad=0., frameon=False)
plt.axis('off')
plt.tight_layout()
glue("calorimeter_diagram", fig, display=False)
plt.close(fig)
../_images/9a8e274108ecaed2aad7703fb7cd3cfc19466953ff7a21d88824b9494ddd9656.png

Fig. 25 A simplified calorimeter. The process occurs in the sample container, which transfers heat to or from the surrounding water at constant pressure. The thermometer and stirrer ensure accurate, uniform temperature readings.#

Build Your Own Calorimeter

Question: How might you build a rudimentary calorimeter with a Styrofoam cup?

Think about a simple chemical reaction in your kitchen.

Defining Common Enthalpy Changes#

Standard Conditions#

Standard conditions are defined as \(P^\circ = 1\text{ bar}\). Reference databases—e.g., the NIST-JANAF Thermochemical Tables and Active Thermochemical Tables—often document properties at \(T = 25^\circ C\) (298.15 K).

Standard Enthalpy of Formation#

The standard enthalpy of formation, \(\Delta H_f^\circ\), is the enthalpy change when 1 mole of a compound is formed from its constituent elements in their standard states.

  • The standard state of an element is its most stable form at \(P^\circ = 1\text{ bar}\) (and a specified \(T\)).

  • By convention, \(\Delta H_f^\circ\) for an element in its standard state is zero.

Table 11 Standard State and Elements#

Standard State

Elements

Monatomic ideal gas

He, Ne, Ar, Kr, Xe, Rn

Homonuclear diatomic ideal gas

H, N, O, F, Cl

Liquid

Br, Hg

Solid

All other elements

Table 12 Solid Standard States#

Crystal Structure

Elements

Body-centered cubic

Alkali metals (Li, Na, K, Rb, Cs), Ba, group 5 transition metals (V, Nb, Ta), group 6 transition metals (Cr, Mo, W), Mn, Fe, & Eu

Hexagonal

Be, Mg, group 3 transition metals (Sc, Y, Lu), group 4 transition metals (Ti, Zr, Hf), Tc, Re, Ru, Os, Co, group 12 transition metals (Zn, Cd), Tl, C (graphite), Se, Te, most lanthanides (La, Ce, Pr, Nd, Pm, Gd, Tb, Dy, Ho, Er, Tm)

Face-centered cubic

Ca, Sr, Rh, Ir, group 10 transition metals (Ni, Pd, Pt), group 11 transition metals (Cu, Ag, Au), Al, Si (diamond cubic), Ge (diamond cubic), Pb, Yb

Rhombohedral

B, As, Sb, Bi, Sm

Orthorhombic

Ga, P (black), S, I, U, and others

Body-centered tetragonal

In, Sn (\(\beta\), white)

Simple cubic

Po

Standard Enthalpy of Reaction#

The standard enthalpy of reaction, \(\Delta H_{\mathrm{rxn}}^\circ\), is the enthalpy change when a reaction is carried out under standard conditions. Mathematically:

(25)#\[\Delta H_{\mathrm{rxn}}^\circ \;=\;\sum_{\text{products}} \nu_p H_p^\circ \;-\; \sum_{\text{reactants}} \nu_r H_r^\circ,\]

where \(\nu_p\) and \(\nu_r\) are stoichiometric coefficients of products and reactants, respectively.

Hess’s Law & Standard Enthalpies of Formation

Hess’s Law: Enthalpy changes are additive and path independent. Consequently,

\[\Delta H_{\mathrm{rxn}}^\circ \;=\; \sum_{p} \nu_p \,\Delta H_{f,p}^\circ \;-\;\sum_{r} \nu_r \,\Delta H_{f,r}^\circ.\]

For example, consider the steam–methane reforming reaction:

\[\text{CH}_4(g) + \text{H}_2\text{O}(g) \;\;\longrightarrow\;\; \text{CO}(g) + 3\,\text{H}_2(g).\]

Directly:

\[\Delta H_{\mathrm{rxn}}^\circ = \nu_{\mathrm{CO}}\,H_{\mathrm{CO}}^\circ + 3\,\nu_{\mathrm{H}_2}\,H_{\mathrm{H}_2}^\circ - \nu_{\mathrm{CH}_4}\,H_{\mathrm{CH}_4}^\circ - \nu_{\mathrm{H}_2\mathrm{O}}\,H_{\mathrm{H}_2\mathrm{O}}^\circ.\]

Alternatively, break each species into formation (or reverse formation) reactions from the elemental forms, then sum their enthalpy changes:

Breakdown of the Steam–Methane Reforming Reaction
\[\begin{split}\begin{align*} \text{CH}_4(g) &\longrightarrow \text{C}(s, \text{graphite}) + 2 \text{H}_2(g) &\quad \Delta H^{\circ}_{\text{rxn}} &= -\Delta H^{\circ}_{f, \text{CH}_4} \\ \text{H}_2\text{O}(g) &\longrightarrow \text{H}_2(g) + \tfrac{1}{2} \text{O}_2(g) &\quad \Delta H^{\circ}_{\text{rxn}} &= -\Delta H^{\circ}_{f, \text{H}_2\text{O}} \\ \text{C}(s, \text{graphite}) + \tfrac{1}{2} \text{O}_2(g) &\longrightarrow \text{CO}(g) &\quad \Delta H^{\circ}_{\text{rxn}} &= \Delta H^{\circ}_{f, \text{CO}} \end{align*}\end{split}\]
\[\Delta H_{\mathrm{rxn}}^\circ = \bigl[-\Delta H_{f}^\circ(\text{CH}_4)\bigr] + \bigl[-\Delta H_{f}^\circ(\text{H}_2\mathrm{O})\bigr] + \Delta H_{f}^\circ(\text{CO}) + 3\,\Delta H_{f}^\circ(\text{H}_2).\]

Either approach gives the same result, thanks to Hess’s Law.