Review#
1. Checklist of Key Concepts#
Section 2.1: Introduction to Statistical Mechanics#
Microscopic–Macroscopic Connection
Macroscopic (thermodynamic) properties can be understood as statistical averages of microscopic properties.
“Expected value” (ensemble average) is the central idea:
\[\langle X \rangle \;=\; \sum_i X_i\,p_i.\]Arithmetic Average vs. Expected Value
Arithmetic average:
\[\bar{X} \;=\; \frac{1}{M}\sum_{i=1}^M X_i.\]Expected value:
\[\langle X \rangle \;=\; \sum_i X_i\,p_i, \quad p_i = \text{probability of microstate } i.\]Microstates and Ensembles
Microcanonical ensemble \((N, V, E)\): system is isolated, fixed total energy \(E\).
Canonical ensemble \((N, V, T)\): system in thermal contact with a reservoir at temperature \(T\).
Grand canonical ensemble \((\mu, V, T)\): system can exchange both energy and particles with a reservoir.
Fundamental Postulate (Microcanonical)
For an isolated system, each accessible microstate is equally probable.
Section 2.2: Canonical Ensemble#
Closed System
Exchanges energy (heat) with surroundings; no exchange of matter.
Boltzmann Factor and Partition Function
Probability of microstate \(i\):
\[p_i \;=\; \frac{e^{-\beta E_i}}{Q}, \quad \beta \;=\;\frac{1}{k_{\text{B}}\,T}.\]Partition function \(Q\):
\[Q \;=\; \sum_{i} e^{-\beta E_i},\]which normalizes probabilities.
Two-State System
A simple example with energies \(E_1\) and \(E_2\).
Partition function:
\[Q \;=\; e^{-\beta E_1} + e^{-\beta E_2}.\]Probabilities (if \(\Delta E = E_2 - E_1\)):
\[p_1 = \frac{1}{1 + e^{-\beta\,\Delta E}}, \quad p_2 = 1 - p_1.\]Interpretation of \(Q\)
\(Q\) is like an “effective count” of accessible microstates.
At low \(T\), only the lowest energy states matter; at high \(T\), many states are accessible.
Section 2.3: Ensemble Averages#
Internal Energy
\(U \equiv \langle E \rangle\).
In the canonical ensemble:
\[U \;=\; \frac{1}{Q} \sum_i E_i\, e^{-\beta E_i} \;=\; -\,\bigl(\tfrac{\partial \ln Q}{\partial \beta}\bigr)_{N,V}.\]Heat Capacity \((C_V)\)
Measures how internal energy changes with temperature:
\[C_V = \bigl(\tfrac{\partial U}{\partial T}\bigr)_{N,V}.\]Also related to energy fluctuations:
\[\sigma_E^2 \;=\; \langle (E - \langle E\rangle)^2\rangle \;=\; k_{\text{B}}\,T^2\,C_V.\]Pressure (brief introduction)
In the canonical ensemble:
\[P \;=\; k_{\text{B}}\,T\, \bigl(\tfrac{\partial\ln Q}{\partial V}\bigr)_{N,T}.\]
Section 2.4: Molecular Partition Functions#
Many Identical and Independent Particles
For \(N\) distinguishable particles, each in a one‐particle partition function \(q\), the total partition function is
\[Q \;=\; q^N \quad (\text{if particles are distinct}).\]For indistinguishable particles (e.g., identical atoms/molecules obeying single occupancy),
\[Q \;=\; \frac{q^N}{N!}.\]Molecular Partition Function
Within Born–Oppenheimer, a molecule’s energy decomposes into translational, rotational, vibrational, and electronic parts:
\[\varepsilon = \varepsilon_{\text{trans}} + \varepsilon_{\text{rot}} + \varepsilon_{\text{vib}} + \varepsilon_{\text{elec}}.\]Thus,
\[q \;=\; q_{\text{trans}}\, q_{\text{rot}}\, q_{\text{vib}}\, q_{\text{elec}}.\]
Section 2.5: Particle in a Box#
Quantum Levels
For a 1D box \((0 \le x \le L)\),
\[E_n = \frac{h^2}{8mL^2}\,n^2,\;\; n=1,2,3,\dots\]In 3D (a rectangular box of sides \(L_x, L_y, L_z\)):
\[E_{n_x,n_y,n_z} \;=\; \frac{h^2}{8m} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} + \frac{n_z^2}{L_z^2}\right).\]Partition Function (3D Box)
For a cubic box of volume \(V = L^3\):
\[q \;=\; \sum_{n_x=1}^\infty \sum_{n_y=1}^\infty \sum_{n_z=1}^\infty \exp\!\Bigl[ -\beta \frac{h^2}{8mL^2}\,(n_x^2 + n_y^2 + n_z^2) \Bigr].\]At high \(T\) or large \(L\), we approximate the sum by an integral and obtain the classical partition function:
\[q_{\text{trans}} \;=\; \frac{V}{\Lambda^3}, \quad \Lambda \;=\; \sqrt{\frac{h^2}{2\pi m k_{\text{B}} T}}\,\, \text{(thermal de Broglie wavelength).}\]Many-Particle System (Ideal Gas)
For \(N\) indistinguishable, non-interacting particles:
\[Q \;=\; \frac{q^N}{N!} \;=\; \frac{1}{N!} \biggl(\frac{V}{\Lambda^3}\biggr)^{\!N}.\]Leads directly to the ideal gas law and to:
\[U \;=\; \frac{3}{2}\,N\,k_{\text{B}}T, \quad C_V \;=\; \frac{3}{2}\,N\,k_{\text{B}}, \quad P = \frac{N\,k_{\text{B}}\,T}{V}.\]
Section 2.6: Harmonic Oscillator#
Quantum Harmonic Oscillator
Energy levels for a 1D harmonic oscillator of frequency \(\omega\):
\[E_n \;=\; \hbar\omega\,\Bigl(n + \tfrac{1}{2}\Bigr), \quad n=0,1,2,\dots\]Partition Function
Summing over these energy levels:
\[q \;=\; \sum_{n=0}^{\infty} e^{-\beta E_n} \;=\; \frac{e^{-\frac{1}{2}\,\beta\,\hbar\omega}}{1 - e^{-\beta\,\hbar\omega}}.\]Ensemble Averages
Internal Energy:
\[U \;=\; \frac{\hbar\omega}{2} \;+\; \frac{\hbar\omega}{\,e^{\beta\,\hbar\omega}-1\,}.\]Heat Capacity:
\[C_V \;=\; k_{\text{B}} \Bigl(\frac{\hbar\omega}{k_{\text{B}} T}\Bigr)^{2}\, \frac{\,e^{\hbar\omega/(k_{\text{B}}T)}\,} {\bigl(e^{\hbar\omega/(k_{\text{B}}T)} - 1\bigr)^{2}}.\]At high temperature (\(k_{\text{B}}T \gg \hbar\omega\)), each harmonic oscillator recovers the classical limit \(U \to k_{\text{B}}T\) and \(C_V \to k_{\text{B}}\).
Section 2.7: Linear Rigid Rotor#
Energy Levels
For a rigid, linear rotor of moment of inertia \(I\):
\[E_J \;=\; \frac{\hbar^2}{2I}\,J\,(J+1), \quad J=0,1,2,\dots\]Each level \(E_J\) has degeneracy \(g_J = 2J + 1\).
Rotational Partition Function
Exact form:
\[q_{\text{rot}} \;=\; \sum_{J=0}^\infty (2J + 1)\, e^{-\beta \,\frac{\hbar^2}{2I}\,J\,(J+1)}.\]Define the rotational temperature \(\Theta_{\text{rot}} = \frac{\hbar^2}{2k_{\text{B}}I}\).
High-temperature limit (\(k_{\text{B}}T \gg \frac{\hbar^2}{2I}\)) gives
\[q_{\text{rot}} \;\approx\; \frac{T}{\Theta_{\text{rot}}} \quad (\text{for a heteronuclear diatomic}).\]For a homonuclear diatomic, include a symmetry factor \(\sigma=2\), so
\[q_{\text{rot}} \;\approx\; \frac{T}{\sigma\,\Theta_{\text{rot}}}.\]Ensemble Averages (High-\(T\) Approximation)
Internal Energy (\(U_{\text{rot}}\)):
\[U_{\text{rot}} \;\approx\; k_{\text{B}}\,T.\](One linear rotor has 2 rotational degrees of freedom \(\rightarrow \frac{2}{2} k_{\text{B}}T\).)
Heat Capacity:
\[C_V^{(\text{rot})} \;\approx\; k_{\text{B}}.\]
Section 2.8: Molecular Statistical Mechanics#
Combining All Degrees of Freedom
For a general molecule, the total one‐molecule partition function is
\[q \;=\; q_{\text{trans}}\, q_{\text{rot}}\, q_{\text{vib}}\, q_{\text{elec}}.\]Extends to polyatomic molecules with more complex rotational constants \(\Theta_{\text{rot,A}}, \Theta_{\text{rot,B}}, \Theta_{\text{rot,C}}\) and multiple vibrational frequencies \(\Theta_{\text{vib},j}\).
Symmetry Considerations
Symmetry factor \(\sigma\) must be included for molecules with indistinguishable orientations (e.g., homonuclear diatomics, symmetrical polyatomics).
Summary Table
Often, we tabulate \(q_{\text{trans}}, q_{\text{rot}}, q_{\text{vib}}, q_{\text{elec}}\) for different molecule types (linear, nonlinear, spherical top, symmetric top, etc.), applying high-temperature (classical) or more exact quantum results as needed.
2. Checklist of Most Important Equations#
Below is a unified list of the major equations from Sections 2.1–2.8.
A. Expected Value of a General Variable
Applicability: general definition in statistical mechanics/probability theory.
B. Microcanonical Ensemble (Fundamental Postulate)
Applicability: isolated system, \((N, V, E)\).
C. Canonical Ensemble Probability
Applicability: closed system in thermal contact at \(T\).
D. Canonical Partition Function
Applicability: \((N, V, T)\) ensemble; sum/integral over all microstates.
E. Internal Energy (Canonical)
F. Heat Capacity at Constant Volume
Also,
G. Pressure (Canonical)
H. Molecular Systems: Indistinguishability Factor
Applicability: identical, indistinguishable particles (e.g., ideal gases).
G. Translational Partition Function (Particle in a 3D box at high \(T\))
I. Harmonic Oscillator Partition Function (1D)
Internal Energy:
J. Rotational Partition Function (Linear Rotor, High \(T\))
Internal Energy:
Heat Capacity:
K. Polyatomic Molecules
General form (neglecting interactions):
For linear vs. nonlinear rotors or multiple vibrational modes, each factor is included appropriately (with possible symmetry factors).